機械学習

単純パーセプトロン①

投稿日:2019年1月31日 更新日:

こちらを読むと

  • ニューラルネットワークのパーセプトロンの概要を知ることができます

単純パーセプトロンとは

ニューラルネットワークの1種で、以下のような入力Xに重みwをかけて加算し、
出力yを取り出すネットワークです。

上記の図を式で表すと、以下のようになります。

$$
\begin{eqnarray}
y=\left\{ \begin{array}{ll}
1 & (w_1x_1+w_2x_2 +\cdots+w_nx_n \geq \theta) \\
0 & (w_1x_1+w_2x_2 +\cdots+w_nx_n < \theta) \\
\end{array} \right.
\end{eqnarray}
$$

ここで、以下のような関数を考えます。

$$
\begin{eqnarray}
f(x)=\left\{ \begin{array}{ll}
1 & (x \geq 0) \\
0 & (x < 0 ) \\
\end{array} \right.
\end{eqnarray}
$$

すると、ネットワークの出力yの式は、以下のように書き直すことができます。

$$
y = f(w_1x_1+w_2x_2 +\cdots+w_nx_n -\theta)
$$

まとめ

  • ニューラルネットワークのパーセプトロンの概要を知ることができました

次回は、上記の式変形を行い、ベクトル形式での式表示、および誤り訂正学習法の方法について説明します。

Reference

詳解ディープラーニング
https://book.mynavi.jp/manatee/books/detail/id=72424



-機械学習

執筆者:


  1. […] 前回のブログで、以下のような\(f(x)\)を定義すると、 […]

comment

メールアドレスが公開されることはありません。 * が付いている欄は必須項目です

関連記事

多クラスロジスティック回帰①

Table of Contents こちらを読むと多クラスロジスティック回帰とは何が嬉しいか多クラス分類モデルソフトマックス関数まとめReference こちらを読むと 機械学習多クラスロジスティック …

scikit-learn load_iris datasetのまとめ

Table of Contents こちらを読むと何がしたいかload_iris datasetまとめ こちらを読むと scikit-learnのload_iris datasetについて、詳細が分か …

ロジスティック回帰④ 勾配法その2

Table of Contents こちらを読むと勾配法の式のおさらい勾配法の式変形シグモイド関数の微分を用いて式変形パラメータの更新式まとめReference こちらを読むと ロジスティック回帰の勾 …

機械学習でのカテゴリ特徴量の扱いについて

Table of Contents こちらを読むとカテゴリ特徴量とはカテゴリ特徴量の例カテゴリ特徴量は機械学習モデルで扱えないカテゴリ特徴量の変換例まとめ こちらを読むと カテゴリ特徴量とは何か?が分 …

ロジスティック回帰①

Table of Contents こちらを読むとロジスティック回帰とは何が嬉しいかシグモイド関数モデル式まとめReference こちらを読むと 機械学習のロジスティック回帰の概要を知ることができま …

Twitterフォロー

Twitterタイムライン