機械学習

多クラスロジスティック回帰①

投稿日:2019年2月12日 更新日:

こちらを読むと

  • 機械学習多クラスロジスティック回帰の概要を知ることができます

多クラスロジスティック回帰とは

分類問題に使われる機械学習のモデルです。

シグモイド関数を用いたロジスティック回帰は、2クラスに分類し、それぞれの確率を出力することができました。

多クラスロジスティック回帰は、基本的に同じ機能ですが、2クラスではなく多クラスに分類することができます。

何が嬉しいか

世の中の分類問題は、 真 or 偽のような2クラスに分類できる問題だけではなく、A or B or Cのような、多クラスに分類する問題が多く存在しています。

そのような問題には、多クラスロジスティック回帰で対応する必要があるのです。

ディープラーニング(CNN)の最初に扱われる、MNIST分類問題などもそうですね。1~10の手書き画像を、実際に1~10に判別して分類していく課題です。

多クラス分類モデル

多クラス分類するモデルは、以下のように、入力が複数、出力も複数あるような形になっています。

ソフトマックス関数

ソフトマックス関数は、多クラス分類を可能にする式で、n次元ベクトル\({\bf x}\)に対して以下のように表されます。

$$
softmax({\bf x})_i = \frac{e^{x_i}}{\sum_{j=1}^n e^{x_j}} (i=1,2,…,n)
$$

まとめ

  • 機械学習の多クラスロジスティック回帰の概要を知ることができました

次回はモデル式の導出を行い、もう少し掘り下げようと思います。

Reference

詳解ディープラーニング
https://book.mynavi.jp/manatee/books/detail/id=72424



-機械学習

執筆者:


  1. […] 前回の記事で、多クラスロジスティック回帰の概要を説明しました。今回は、モデル式の導出まで行い、最適解を求める下準備をしたいと思います。 […]

comment

メールアドレスが公開されることはありません。 * が付いている欄は必須項目です

関連記事

単純パーセプトロン③

Table of Contents こちらを読むと数式おさらい実装まとめReference こちらを読むと 単純パーセプトロンの実装方法が分かります 数式おさらい 前回のブログで、単純パーセプトロンの …

kaggleのKernelでGPUを使うには

Table of Contents こちらを読むとはじめにKernelの設定まとめ こちらを読むと kaggleのKernelでGPUを使う方法が分かります。記事の所要時間は5分です。 はじめに ka …

ロジスティック回帰③ 勾配法

Table of Contents こちらを読むと交差エントロピー誤差関数のおさらい勾配法(勾配降下法)まとめReference こちらを読むと ロジスティック回帰の勾配法でパラメータを決定する手法を …

scikit-learn load_iris datasetのデータ観察

Table of Contents こちらを読むとデータ観察のソースコード散布図マトリクスの解説散布図の解説まとめReference こちらを読むと scikit-learnのload_iris da …

scikit-learn load_iris datasetのまとめ

Table of Contents こちらを読むと何がしたいかload_iris datasetまとめ こちらを読むと scikit-learnのload_iris datasetについて、詳細が分か …

Twitterフォロー

Twitterタイムライン