機械学習

単純パーセプトロン①

投稿日:2019年1月31日 更新日:

こちらを読むと

  • ニューラルネットワークのパーセプトロンの概要を知ることができます

単純パーセプトロンとは

ニューラルネットワークの1種で、以下のような入力Xに重みwをかけて加算し、
出力yを取り出すネットワークです。

上記の図を式で表すと、以下のようになります。

$$
\begin{eqnarray}
y=\left\{ \begin{array}{ll}
1 & (w_1x_1+w_2x_2 +\cdots+w_nx_n \geq \theta) \\
0 & (w_1x_1+w_2x_2 +\cdots+w_nx_n < \theta) \\
\end{array} \right.
\end{eqnarray}
$$

ここで、以下のような関数を考えます。

$$
\begin{eqnarray}
f(x)=\left\{ \begin{array}{ll}
1 & (x \geq 0) \\
0 & (x < 0 ) \\
\end{array} \right.
\end{eqnarray}
$$

すると、ネットワークの出力yの式は、以下のように書き直すことができます。

$$
y = f(w_1x_1+w_2x_2 +\cdots+w_nx_n -\theta)
$$

まとめ

  • ニューラルネットワークのパーセプトロンの概要を知ることができました

次回は、上記の式変形を行い、ベクトル形式での式表示、および誤り訂正学習法の方法について説明します。

Reference

詳解ディープラーニング
https://book.mynavi.jp/manatee/books/detail/id=72424



-機械学習

執筆者:


  1. […] 前回のブログで、以下のような\(f(x)\)を定義すると、 […]

comment

メールアドレスが公開されることはありません。 * が付いている欄は必須項目です

関連記事

機械学習でのカテゴリ特徴量の扱いについて

Table of Contents こちらを読むとカテゴリ特徴量とはカテゴリ特徴量の例カテゴリ特徴量は機械学習モデルで扱えないカテゴリ特徴量の変換例まとめ こちらを読むと カテゴリ特徴量とは何か?が分 …

多クラスロジスティック回帰①

Table of Contents こちらを読むと多クラスロジスティック回帰とは何が嬉しいか多クラス分類モデルソフトマックス関数まとめReference こちらを読むと 機械学習多クラスロジスティック …

ロジスティック回帰② アルゴリズム

Table of Contents こちらを読むと尤度関数を用いた最尤推定まとめReference こちらを読むと ロジスティック回帰のアルゴリズムを理解できます 前回の記事で、ロジスティック回帰はシ …

ロジスティック回帰③ 勾配法

Table of Contents こちらを読むと交差エントロピー誤差関数のおさらい勾配法(勾配降下法)まとめReference こちらを読むと ロジスティック回帰の勾配法でパラメータを決定する手法を …

単純パーセプトロン③

Table of Contents こちらを読むと数式おさらい実装まとめReference こちらを読むと 単純パーセプトロンの実装方法が分かります 数式おさらい 前回のブログで、単純パーセプトロンの …