機械学習

単純パーセプトロン①

投稿日:2019年1月31日 更新日:

こちらを読むと

  • ニューラルネットワークのパーセプトロンの概要を知ることができます

単純パーセプトロンとは

ニューラルネットワークの1種で、以下のような入力Xに重みwをかけて加算し、
出力yを取り出すネットワークです。

上記の図を式で表すと、以下のようになります。

$$
\begin{eqnarray}
y=\left\{ \begin{array}{ll}
1 & (w_1x_1+w_2x_2 +\cdots+w_nx_n \geq \theta) \\
0 & (w_1x_1+w_2x_2 +\cdots+w_nx_n < \theta) \\
\end{array} \right.
\end{eqnarray}
$$

ここで、以下のような関数を考えます。

$$
\begin{eqnarray}
f(x)=\left\{ \begin{array}{ll}
1 & (x \geq 0) \\
0 & (x < 0 ) \\
\end{array} \right.
\end{eqnarray}
$$

すると、ネットワークの出力yの式は、以下のように書き直すことができます。

$$
y = f(w_1x_1+w_2x_2 +\cdots+w_nx_n -\theta)
$$

まとめ

  • ニューラルネットワークのパーセプトロンの概要を知ることができました

次回は、上記の式変形を行い、ベクトル形式での式表示、および誤り訂正学習法の方法について説明します。

Reference

詳解ディープラーニング
https://book.mynavi.jp/manatee/books/detail/id=72424



-機械学習

執筆者:


  1. […] 前回のブログで、以下のような\(f(x)\)を定義すると、 […]

comment

メールアドレスが公開されることはありません。 * が付いている欄は必須項目です

関連記事

scikit-learn load_iris datasetのデータ観察

Table of Contents こちらを読むとデータ観察のソースコード散布図マトリクスの解説散布図の解説まとめReference こちらを読むと scikit-learnのload_iris da …

kaggleのKernelでGPUを使うには

Table of Contents こちらを読むとはじめにKernelの設定まとめ こちらを読むと kaggleのKernelでGPUを使う方法が分かります。記事の所要時間は5分です。 はじめに ka …

Google Colaboratoryで大容量ファイルの分析を行う完全準備ガイド

Table of Contents こちらを読むとやりたいことたとえばシンプルにやると失敗するベストはGoogle Drive上でzip解凍しておくZIP Extractorで解凍まとめReferen …

多クラスロジスティック回帰①

Table of Contents こちらを読むと多クラスロジスティック回帰とは何が嬉しいか多クラス分類モデルソフトマックス関数まとめReference こちらを読むと 機械学習多クラスロジスティック …

ロジスティック回帰④ 勾配法その2

Table of Contents こちらを読むと勾配法の式のおさらい勾配法の式変形シグモイド関数の微分を用いて式変形パラメータの更新式まとめReference こちらを読むと ロジスティック回帰の勾 …

Twitterフォロー

Twitterタイムライン