機械学習

[機械学習] sklearnのグリッドサーチ(Grid Search)について

投稿日:2019年1月24日 更新日:

こちらを読むと

  • 機械学習のグリッドサーチ(Grid Search)の概要が分かります
  • sklearnのグリッドサーチ使用方法が分かります

グリッドサーチとは

機械学習のモデルを作成するとき、”ハイパーパラメータ”という、本来は人が試行錯誤で決める値があります。このパラメータにより、モデルの予測性能が変わってきます。
グリッドサーチは、あらかじめ決めたパラメータの候補を順番に試していき、一番良いパラメータを見つける手法です。

グリッドサーチの概念図:予めパラメータの候補を決めておく

例えば、scikit-learnのロジスティック回帰では、以下のようなハイパーパラメータがあります(一部を抜粋)。
これらのパラメータについて、候補値を試していくわけです。

  • penalty : str, ‘l1’ or ‘l2’, default: ‘l2’
  • tol : float, default: 1e-4
  • C : float, default: 1.0

https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html

グリッドサーチの使い方

scikit-learnのGridSearchCVを使います。

# グリッドサーチ作成
gs = GridSearchCV(estimator=’分析器’,param_grid=’ハイパーパラメータ候補値’,scoring=’評価指標’,)
# フィッティング
gs.fit(X, y)
# 予測
gs.predict(X)

https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.GridSearchCV.html

まとめ

  • 機械学習のグリッドサーチ(Grid Search)の概要が分かりました
  • sklearnのグリッドサーチ使用方法が分かりました

実際の実行例は、以下をご参照ください。
http://sumikitch.com/grid-search/



-機械学習

執筆者:


  1. […] 前回、グリッドサーチの概要について説明しました。http://sumikitch.com/sklearn-grid-search/今回は、実装例を見て、理解を深めたいと思います。 […]

comment

メールアドレスが公開されることはありません。 * が付いている欄は必須項目です

関連記事

単純パーセプトロン①

Table of Contents こちらを読むと単純パーセプトロンとは式まとめReference こちらを読むと ニューラルネットワークのパーセプトロンの概要を知ることができます 単純パーセプトロン …

ロジスティック回帰② アルゴリズム

Table of Contents こちらを読むと尤度関数を用いた最尤推定まとめReference こちらを読むと ロジスティック回帰のアルゴリズムを理解できます 前回の記事で、ロジスティック回帰はシ …

多クラスロジスティック回帰② ソフトマックス関数の微分

Table of Contents こちらを読むとソフトマックス関数のおさらいソフトマックス関数の微分まとめReference こちらを読むと 多クラスロジスティック回帰のソフトマックス関数の微分の導 …

ロジスティック回帰①

Table of Contents こちらを読むとロジスティック回帰とは何が嬉しいかシグモイド関数モデル式まとめReference こちらを読むと 機械学習のロジスティック回帰の概要を知ることができま …

多クラスロジスティック回帰⑥ モデル出力を確率で

Table of Contents こちらを読むと確率の表し方まとめReference こちらを読むと 多クラスロジスティック回帰について、モデル出力を確率で表す方法が分かります 確率の表し方 前回ま …

Twitterフォロー

Twitterタイムライン