機械学習

scikit-learn load_iris datasetのまとめ

投稿日:

アイリス、花、紫、赤紫

こちらを読むと

  • scikit-learnのload_iris datasetについて、詳細が分かります。

何がしたいか

scikit-learnのload_iris dataset を使ってデータ分析の練習をしようと思ったのですが、そもそもどういうデータが入っているのか?データの型はどうなっているのか?など疑問点が出てきました。

データをまとめた決定版のようなものが見つからなかったので、書いてみることにしました。

load_iris dataset

公式ページはこちら

非常に簡単な多クラス分類用のデータセットです。

情報
クラス数3
クラス毎のデータ数50
サンプル合計数150
次元4
特徴量最小最大平均標準偏差
sepal(がく)の長さ [cm]4.37.95.840.83
sepal(がく)の幅 [cm] 2.04.43.050.43
花びらの長さ [cm]1.06.93.761.76
花びらの幅[cm]0.12.51.200.76
クラス
Iris-Setosa
Iris-Versicolour
Iris-Virginica

まとめ

  • scikit-learnのload_iris datasetについて、詳細が分かりました。

これでload_irisの基本情報が押さえられたので、データ分析することができます!



-機械学習

執筆者:


  1. […] 前回のブログで、load_irisのdatasetを解説しました。今回はこのデータを観察していきます。 […]

comment

メールアドレスが公開されることはありません。 * が付いている欄は必須項目です

関連記事

多クラスロジスティック回帰④ ソフトマックス関数の微分

Table of Contents こちらを読むと前回のおさらいソフトマックス関数の微分(続き)まとめReference こちらを読むと 多クラスロジスティック回帰のソフトマックス関数の微分 の導出過 …

多クラスロジスティック回帰③ソフトマックス関数の微分その2

Table of Contents こちらを読むと前回のおさらい ソフトマックス関数の微分(続き) まとめReference こちらを読むと 多クラスロジスティック回帰のモデル式の導出過程が分かります …

Google Colaboratoryで大容量ファイルの分析を行う完全準備ガイド

Table of Contents こちらを読むとやりたいことたとえばシンプルにやると失敗するベストはGoogle Drive上でzip解凍しておくZIP Extractorで解凍まとめReferen …

ロジスティック回帰①

Table of Contents こちらを読むとロジスティック回帰とは何が嬉しいかシグモイド関数モデル式まとめReference こちらを読むと 機械学習のロジスティック回帰の概要を知ることができま …

scikit-learn load_iris datasetのデータ観察

Table of Contents こちらを読むとデータ観察のソースコード散布図マトリクスの解説散布図の解説まとめReference こちらを読むと scikit-learnのload_iris da …

Twitterフォロー

Twitterタイムライン