Python 機械学習

単純パーセプトロン③

投稿日:

こちらを読むと

  • 単純パーセプトロンの実装方法が分かります

数式おさらい

前回のブログで、単純パーセプトロンのモデル式および、重みとバイアスの更新式を以下のように定義できました。

$$
y = f({\bf w}^T{\bf x} + b)
$$
$$
\begin{eqnarray}
\Delta{\bf w}&=&(t-y){\bf x} \\
\Delta b&=&(t-y)
\end{eqnarray}
$$
$$
\begin{eqnarray}
{\bf w}^{(k+1)}&=&{\bf w}^{(k)}+\Delta{\bf w} \\
b^{(k+1)}&=&b^{(k)}+\Delta b
\end{eqnarray}
$$

実装

ここからは実装です。
プログラムは、詳解ディープラーニングを参考にさせていただきました。

まとめ

  • 単純パーセプトロンの実装方法が分かりました

ここまで、単純パーセプトロンについて、
理論→数式化→実装
と進めてきました。ほかのアルゴリズムでも、同じ方法で研究してみると理解しやすいと思います。

Reference

詳解ディープラーニング
https://book.mynavi.jp/manatee/books/detail/id=72424



-Python, 機械学習

執筆者:


comment

メールアドレスが公開されることはありません。 * が付いている欄は必須項目です

関連記事

[機械学習] sklearnのグリッドサーチ(Grid Search)実装

Table of Contents こちらを読むとやりたいこと実装例まとめReference こちらを読むと sklearnのグリッドサーチ実装例が分かりますグリッドサーチしたベストパラメータの見方が …

日本語の疑似コードによるプログラミング(プログラミング初心者のために)

Table of Contents こちらを読むとはじめに課題:バブルソート関数の定義疑似コードを書く繰り返しをまとめるソートの交換処理を具体的に疑似コード⇒Pythonコードへの変換まとめRefer …

機械学習でのカテゴリ特徴量の扱いについて

Table of Contents こちらを読むとカテゴリ特徴量とはカテゴリ特徴量の例カテゴリ特徴量は機械学習モデルで扱えないカテゴリ特徴量の変換例まとめ こちらを読むと カテゴリ特徴量とは何か?が分 …

kaggleのKernelでGPUを使うには

Table of Contents こちらを読むとはじめにKernelの設定まとめ こちらを読むと kaggleのKernelでGPUを使う方法が分かります。記事の所要時間は5分です。 はじめに ka …

WordPress (Stinger)にPythonのソースコードを貼るには

Table of Contents こちらを読むとやりたいこと手順Gistとはまとめ こちらを読むと WordPress(Stingerテンプレート)でのPythonのソースコードの貼り方が分かります …

Twitterフォロー

Twitterタイムライン