Python 機械学習

単純パーセプトロン③

投稿日:

こちらを読むと

  • 単純パーセプトロンの実装方法が分かります

数式おさらい

前回のブログで、単純パーセプトロンのモデル式および、重みとバイアスの更新式を以下のように定義できました。

$$
y = f({\bf w}^T{\bf x} + b)
$$
$$
\begin{eqnarray}
\Delta{\bf w}&=&(t-y){\bf x} \\
\Delta b&=&(t-y)
\end{eqnarray}
$$
$$
\begin{eqnarray}
{\bf w}^{(k+1)}&=&{\bf w}^{(k)}+\Delta{\bf w} \\
b^{(k+1)}&=&b^{(k)}+\Delta b
\end{eqnarray}
$$

実装

ここからは実装です。
プログラムは、詳解ディープラーニングを参考にさせていただきました。

まとめ

  • 単純パーセプトロンの実装方法が分かりました

ここまで、単純パーセプトロンについて、
理論→数式化→実装
と進めてきました。ほかのアルゴリズムでも、同じ方法で研究してみると理解しやすいと思います。

Reference

詳解ディープラーニング
https://book.mynavi.jp/manatee/books/detail/id=72424



-Python, 機械学習

執筆者:


comment

メールアドレスが公開されることはありません。 * が付いている欄は必須項目です

関連記事

ロジスティック回帰④ 勾配法その2

Table of Contents こちらを読むと勾配法の式のおさらい勾配法の式変形シグモイド関数の微分を用いて式変形パラメータの更新式まとめReference こちらを読むと ロジスティック回帰の勾 …

多クラスロジスティック回帰⑤ モデル式

Table of Contents こちらを読むとモデルのおさらいモデル出力式の導出(代表値)モデル出力式の導出(全体)まとめReference こちらを読むと 多クラスロジスティック回帰のモデル式の …

scikit-learn load_iris datasetのまとめ

Table of Contents こちらを読むと何がしたいかload_iris datasetまとめ こちらを読むと scikit-learnのload_iris datasetについて、詳細が分か …

日本語の疑似コードによるプログラミング(プログラミング初心者のために)

Table of Contents こちらを読むとはじめに課題:バブルソート関数の定義疑似コードを書く繰り返しをまとめるソートの交換処理を具体的に疑似コード⇒Pythonコードへの変換まとめRefer …

Google Colaboratoryで大容量ファイルの分析を行う完全準備ガイド

Table of Contents こちらを読むとやりたいことたとえばシンプルにやると失敗するベストはGoogle Drive上でzip解凍しておくZIP Extractorで解凍まとめReferen …

Twitterフォロー

Twitterタイムライン