Python 機械学習

単純パーセプトロン③

投稿日:

こちらを読むと

  • 単純パーセプトロンの実装方法が分かります

数式おさらい

前回のブログで、単純パーセプトロンのモデル式および、重みとバイアスの更新式を以下のように定義できました。

$$
y = f({\bf w}^T{\bf x} + b)
$$
$$
\begin{eqnarray}
\Delta{\bf w}&=&(t-y){\bf x} \\
\Delta b&=&(t-y)
\end{eqnarray}
$$
$$
\begin{eqnarray}
{\bf w}^{(k+1)}&=&{\bf w}^{(k)}+\Delta{\bf w} \\
b^{(k+1)}&=&b^{(k)}+\Delta b
\end{eqnarray}
$$

実装

ここからは実装です。
プログラムは、詳解ディープラーニングを参考にさせていただきました。

まとめ

  • 単純パーセプトロンの実装方法が分かりました

ここまで、単純パーセプトロンについて、
理論→数式化→実装
と進めてきました。ほかのアルゴリズムでも、同じ方法で研究してみると理解しやすいと思います。

Reference

詳解ディープラーニング
https://book.mynavi.jp/manatee/books/detail/id=72424



-Python, 機械学習

執筆者:


comment

メールアドレスが公開されることはありません。 * が付いている欄は必須項目です

関連記事

WordPress (Stinger)にPythonのソースコードを貼るには

Table of Contents こちらを読むとやりたいこと手順Gistとはまとめ こちらを読むと WordPress(Stingerテンプレート)でのPythonのソースコードの貼り方が分かります …

ロジスティック回帰①

Table of Contents こちらを読むとロジスティック回帰とは何が嬉しいかシグモイド関数モデル式まとめReference こちらを読むと 機械学習のロジスティック回帰の概要を知ることができま …

多クラスロジスティック回帰④ ソフトマックス関数の微分

Table of Contents こちらを読むと前回のおさらいソフトマックス関数の微分(続き)まとめReference こちらを読むと 多クラスロジスティック回帰のソフトマックス関数の微分 の導出過 …

Kaggle Kernelでライブラリをpip installでインストールする方法

Table of Contents こちらを読むとはじめにKaggle Kernel画面外部ライブラリのインストールまとめ こちらを読むと Kaggle Kernelでライブラリをpip instal …

多クラスロジスティック回帰② ソフトマックス関数の微分

Table of Contents こちらを読むとソフトマックス関数のおさらいソフトマックス関数の微分まとめReference こちらを読むと 多クラスロジスティック回帰のソフトマックス関数の微分の導 …

Twitterフォロー

Twitterタイムライン