Python 機械学習

単純パーセプトロン③

投稿日:

こちらを読むと

  • 単純パーセプトロンの実装方法が分かります

数式おさらい

前回のブログで、単純パーセプトロンのモデル式および、重みとバイアスの更新式を以下のように定義できました。

$$
y = f({\bf w}^T{\bf x} + b)
$$
$$
\begin{eqnarray}
\Delta{\bf w}&=&(t-y){\bf x} \\
\Delta b&=&(t-y)
\end{eqnarray}
$$
$$
\begin{eqnarray}
{\bf w}^{(k+1)}&=&{\bf w}^{(k)}+\Delta{\bf w} \\
b^{(k+1)}&=&b^{(k)}+\Delta b
\end{eqnarray}
$$

実装

ここからは実装です。
プログラムは、詳解ディープラーニングを参考にさせていただきました。

まとめ

  • 単純パーセプトロンの実装方法が分かりました

ここまで、単純パーセプトロンについて、
理論→数式化→実装
と進めてきました。ほかのアルゴリズムでも、同じ方法で研究してみると理解しやすいと思います。

Reference

詳解ディープラーニング
https://book.mynavi.jp/manatee/books/detail/id=72424



-Python, 機械学習

執筆者:


comment

メールアドレスが公開されることはありません。 * が付いている欄は必須項目です

関連記事

単純パーセプトロン②

Table of Contents こちらを読むとモデルの数式誤り訂正学習法の更新式まとめ こちらを読むと 単純パーセプトロンのモデルの数式での表し方が分かります モデルの数式 前回のブログで、以下の …

Python matplotlibで複数のグラフを描画する

Table of Contents こちらを読むと記事を書いたきっかけ複数グラフの枠を表示グラフの中身を表示グラフ間隔の調整まとめReference こちらを読むと Pythonのグラフライブラリma …

ロジスティック回帰①

Table of Contents こちらを読むとロジスティック回帰とは何が嬉しいかシグモイド関数モデル式まとめReference こちらを読むと 機械学習のロジスティック回帰の概要を知ることができま …

カテゴリ特徴量の変換方法

Table of Contents こちらを読むとデータ例One-HotエンコーディングダミーコーディングEffectコーディング変換方法のまとめまとめReference こちらを読むと カテゴリ特徴 …

多クラスロジスティック回帰④ ソフトマックス関数の微分

Table of Contents こちらを読むと前回のおさらいソフトマックス関数の微分(続き)まとめReference こちらを読むと 多クラスロジスティック回帰のソフトマックス関数の微分 の導出過 …

Twitterフォロー

Twitterタイムライン