機械学習

scikit-learn load_iris datasetのまとめ

投稿日:

アイリス、花、紫、赤紫

こちらを読むと

  • scikit-learnのload_iris datasetについて、詳細が分かります。

何がしたいか

scikit-learnのload_iris dataset を使ってデータ分析の練習をしようと思ったのですが、そもそもどういうデータが入っているのか?データの型はどうなっているのか?など疑問点が出てきました。

データをまとめた決定版のようなものが見つからなかったので、書いてみることにしました。

load_iris dataset

公式ページはこちら

非常に簡単な多クラス分類用のデータセットです。

情報
クラス数3
クラス毎のデータ数50
サンプル合計数150
次元4
特徴量最小最大平均標準偏差
sepal(がく)の長さ [cm]4.37.95.840.83
sepal(がく)の幅 [cm] 2.04.43.050.43
花びらの長さ [cm]1.06.93.761.76
花びらの幅[cm]0.12.51.200.76
クラス
Iris-Setosa
Iris-Versicolour
Iris-Virginica

まとめ

  • scikit-learnのload_iris datasetについて、詳細が分かりました。

これでload_irisの基本情報が押さえられたので、データ分析することができます!



-機械学習

執筆者:


  1. […] 前回のブログで、load_irisのdatasetを解説しました。今回はこのデータを観察していきます。 […]

comment

メールアドレスが公開されることはありません。 * が付いている欄は必須項目です

関連記事

多クラスロジスティック回帰⑥ モデル出力を確率で

Table of Contents こちらを読むと確率の表し方まとめReference こちらを読むと 多クラスロジスティック回帰について、モデル出力を確率で表す方法が分かります 確率の表し方 前回ま …

カテゴリ特徴量の変換方法

Table of Contents こちらを読むとデータ例One-HotエンコーディングダミーコーディングEffectコーディング変換方法のまとめまとめReference こちらを読むと カテゴリ特徴 …

多クラスロジスティック回帰④ ソフトマックス関数の微分

Table of Contents こちらを読むと前回のおさらいソフトマックス関数の微分(続き)まとめReference こちらを読むと 多クラスロジスティック回帰のソフトマックス関数の微分 の導出過 …

多クラスロジスティック回帰③ソフトマックス関数の微分その2

Table of Contents こちらを読むと前回のおさらい ソフトマックス関数の微分(続き) まとめReference こちらを読むと 多クラスロジスティック回帰のモデル式の導出過程が分かります …

多クラスロジスティック回帰⑤ モデル式

Table of Contents こちらを読むとモデルのおさらいモデル出力式の導出(代表値)モデル出力式の導出(全体)まとめReference こちらを読むと 多クラスロジスティック回帰のモデル式の …

Twitterフォロー

Twitterタイムライン