機械学習

単純パーセプトロン①

投稿日:2019年1月31日 更新日:

こちらを読むと

  • ニューラルネットワークのパーセプトロンの概要を知ることができます

単純パーセプトロンとは

ニューラルネットワークの1種で、以下のような入力Xに重みwをかけて加算し、
出力yを取り出すネットワークです。

上記の図を式で表すと、以下のようになります。

$$
\begin{eqnarray}
y=\left\{ \begin{array}{ll}
1 & (w_1x_1+w_2x_2 +\cdots+w_nx_n \geq \theta) \\
0 & (w_1x_1+w_2x_2 +\cdots+w_nx_n < \theta) \\
\end{array} \right.
\end{eqnarray}
$$

ここで、以下のような関数を考えます。

$$
\begin{eqnarray}
f(x)=\left\{ \begin{array}{ll}
1 & (x \geq 0) \\
0 & (x < 0 ) \\
\end{array} \right.
\end{eqnarray}
$$

すると、ネットワークの出力yの式は、以下のように書き直すことができます。

$$
y = f(w_1x_1+w_2x_2 +\cdots+w_nx_n -\theta)
$$

まとめ

  • ニューラルネットワークのパーセプトロンの概要を知ることができました

次回は、上記の式変形を行い、ベクトル形式での式表示、および誤り訂正学習法の方法について説明します。

Reference

詳解ディープラーニング
https://book.mynavi.jp/manatee/books/detail/id=72424



-機械学習

執筆者:


  1. […] 前回のブログで、以下のような\(f(x)\)を定義すると、 […]

comment

メールアドレスが公開されることはありません。 * が付いている欄は必須項目です

関連記事

多クラスロジスティック回帰⑥ モデル出力を確率で

Table of Contents こちらを読むと確率の表し方まとめReference こちらを読むと 多クラスロジスティック回帰について、モデル出力を確率で表す方法が分かります 確率の表し方 前回ま …

単純パーセプトロン③

Table of Contents こちらを読むと数式おさらい実装まとめReference こちらを読むと 単純パーセプトロンの実装方法が分かります 数式おさらい 前回のブログで、単純パーセプトロンの …

ロジスティック回帰①

Table of Contents こちらを読むとロジスティック回帰とは何が嬉しいかシグモイド関数モデル式まとめReference こちらを読むと 機械学習のロジスティック回帰の概要を知ることができま …

単純パーセプトロン②

Table of Contents こちらを読むとモデルの数式誤り訂正学習法の更新式まとめ こちらを読むと 単純パーセプトロンのモデルの数式での表し方が分かります モデルの数式 前回のブログで、以下の …

ロジスティック回帰② アルゴリズム

Table of Contents こちらを読むと尤度関数を用いた最尤推定まとめReference こちらを読むと ロジスティック回帰のアルゴリズムを理解できます 前回の記事で、ロジスティック回帰はシ …

Twitterフォロー

Twitterタイムライン