機械学習

単純パーセプトロン①

投稿日:2019年1月31日 更新日:

こちらを読むと

  • ニューラルネットワークのパーセプトロンの概要を知ることができます

単純パーセプトロンとは

ニューラルネットワークの1種で、以下のような入力Xに重みwをかけて加算し、
出力yを取り出すネットワークです。

上記の図を式で表すと、以下のようになります。

$$
\begin{eqnarray}
y=\left\{ \begin{array}{ll}
1 & (w_1x_1+w_2x_2 +\cdots+w_nx_n \geq \theta) \\
0 & (w_1x_1+w_2x_2 +\cdots+w_nx_n < \theta) \\
\end{array} \right.
\end{eqnarray}
$$

ここで、以下のような関数を考えます。

$$
\begin{eqnarray}
f(x)=\left\{ \begin{array}{ll}
1 & (x \geq 0) \\
0 & (x < 0 ) \\
\end{array} \right.
\end{eqnarray}
$$

すると、ネットワークの出力yの式は、以下のように書き直すことができます。

$$
y = f(w_1x_1+w_2x_2 +\cdots+w_nx_n -\theta)
$$

まとめ

  • ニューラルネットワークのパーセプトロンの概要を知ることができました

次回は、上記の式変形を行い、ベクトル形式での式表示、および誤り訂正学習法の方法について説明します。

Reference

詳解ディープラーニング
https://book.mynavi.jp/manatee/books/detail/id=72424



-機械学習

執筆者:


  1. […] 前回のブログで、以下のような\(f(x)\)を定義すると、 […]

comment

メールアドレスが公開されることはありません。 * が付いている欄は必須項目です

関連記事

多クラスロジスティック回帰④ ソフトマックス関数の微分

Table of Contents こちらを読むと前回のおさらいソフトマックス関数の微分(続き)まとめReference こちらを読むと 多クラスロジスティック回帰のソフトマックス関数の微分 の導出過 …

Kaggle Kernelでライブラリをpip installでインストールする方法

Table of Contents こちらを読むとはじめにKaggle Kernel画面外部ライブラリのインストールまとめ こちらを読むと Kaggle Kernelでライブラリをpip instal …

単純パーセプトロン③

Table of Contents こちらを読むと数式おさらい実装まとめReference こちらを読むと 単純パーセプトロンの実装方法が分かります 数式おさらい 前回のブログで、単純パーセプトロンの …

ロジスティック回帰①

Table of Contents こちらを読むとロジスティック回帰とは何が嬉しいかシグモイド関数モデル式まとめReference こちらを読むと 機械学習のロジスティック回帰の概要を知ることができま …

多クラスロジスティック回帰③ソフトマックス関数の微分その2

Table of Contents こちらを読むと前回のおさらい ソフトマックス関数の微分(続き) まとめReference こちらを読むと 多クラスロジスティック回帰のモデル式の導出過程が分かります …

Twitterフォロー

Twitterタイムライン