機械学習

多クラスロジスティック回帰③ソフトマックス関数の微分その2

投稿日:2019年2月15日 更新日:

こちらを読むと

  • 多クラスロジスティック回帰のモデル式の導出過程が分かります。

前回の記事で、多クラスロジスティック回帰のソフトマックス関数の微分を途中まで記載しました。今回はその続きです。

前回のおさらい

入力を\(x_i\)、出力を\(y_i\) (\(i\)=1,2, …n)とすると、
$$
\begin{pmatrix}
y_1 \\
y_2 \\
\vdots \\
y_n
\end{pmatrix}
=
\frac{1}{\sum_{j=1}^n e^{x_j}}
\begin{pmatrix}
e^{x_1} \\
e^{x_2} \\
\vdots \\
e^{x_n}
\end{pmatrix}
$$

と表せ、右辺の分母を
$$
Z := \sum_{j=1}^n e^{x_j}
$$

とおいたとき、ソフトマックス関数の微分を求めると、まず\(i\)=\(j\)では
$$
\frac{\partial y_i }{\partial x_i} = \frac{e^{x_i}Z – e^{x_i}e^{x_i}}{Z^2} = y_i(1 – y_i)
$$
となり、\(i\)≠\(j\)では
$$
-y_iy_j
$$

となるという説明をしました。この変換が分かりづらいので、今回はこの部分に焦点を絞ります。

ソフトマックス関数の微分(続き)

まず\(i\)=\(j\)の場合、
$$
Z := \sum_{i=1}^n e^{x_i}
$$
となるため、Zが\(x_i\)の関数になるので、(\(j\)が\(i\)に代わっている点に注意)
$$
\begin{eqnarray}
\frac{\partial y_i }{\partial x_i} &=& \frac{\partial}{\partial x_i} \frac{e^{x_i}}{Z} \\
&=& \frac{(e^{x_i})’Z – e^{x_i}Z’}{Z^2}
\end{eqnarray}
$$
※微分の公式により

ここで、シグマの微分をするわけですが、
$$
\begin{eqnarray}
Z &:=& \sum_{j=1}^n e^{x_j} \\
&=&e^{x_1} + e^{x_2} + \cdots + e^{x_i} + \cdots + e^{x_n}
\end{eqnarray}
$$
となるため、\(x_i\)の関数としては、和の中の\(x_i\)のみが残るので、
\(Z’\)は\( (e^{x_i})’ \)、すなわち\(e^{x_i}\)と等しくなります。
したがって上式は、
$$
\frac{\partial y_i }{\partial x_i} = \frac{e^{x_i}Z – e^{x_i}e^{x_i}}{Z^2}
$$
となるわけです。

ここで、
$$
y_i = \frac{e^{x_i}}{Z}
$$
なので、最終的に、\(i=j\)のとき、
$$
\begin{eqnarray}
\frac{\partial y_i }{\partial x_i} &=& \frac{e^{x_i}Z – e^{x_i}e^{x_i}}{Z^2} \\
&=& \frac{e^{x_i}}{Z}-(\frac{e^{x_i}}{Z})^2= y_i(1 – y_i)
\end{eqnarray}
$$
となります。

まとめ

  • 多クラスロジスティック回帰のソフトマックス関数の微分を途中まで説明しました。

私は数式が苦手なので、参考書の式導出がすぐに分からないのですが、こういう細かい計算過程が省かれていることが多いためだと思います。次回も引き続き式導出を解説

Reference

詳解ディープラーニング
https://book.mynavi.jp/manatee/books/detail/id=7242



-機械学習

執筆者:


  1. […] 前回の記事で、ソフトマックス関数の微分の導出過程を途中まで記載しました。今回はその続きです。 […]

comment

メールアドレスが公開されることはありません。 * が付いている欄は必須項目です

関連記事

SIerエンジニアが1年間AIを勉強して感じること

Table of Contents こちらを読むと結論:AI職は、エンジニアの上位職ではなく、別物著者についてAI職と一般エンジニアとの違い機械学習エンジニアが一般エンジニアと違うところ機械学習のモデ …

scikit-learn load_iris datasetのまとめ

Table of Contents こちらを読むと何がしたいかload_iris datasetまとめ こちらを読むと scikit-learnのload_iris datasetについて、詳細が分か …

Kaggle Kernelでライブラリをpip installでインストールする方法

Table of Contents こちらを読むとはじめにKaggle Kernel画面外部ライブラリのインストールまとめ こちらを読むと Kaggle Kernelでライブラリをpip instal …

scikit-learn load_iris datasetのデータ観察

Table of Contents こちらを読むとデータ観察のソースコード散布図マトリクスの解説散布図の解説まとめReference こちらを読むと scikit-learnのload_iris da …

機械学習初心者のための入門本ランキング

Table of Contents こちらを読むと評価基準第1位:ゼロから作るDeep Learning ―Pythonで学ぶディープラーニングの理論と実装第2位:Pythonで動かして学ぶ! あたら …

Twitterフォロー

Twitterタイムライン