機械学習

多クラスロジスティック回帰③ソフトマックス関数の微分その2

投稿日:2019年2月15日 更新日:

こちらを読むと

  • 多クラスロジスティック回帰のモデル式の導出過程が分かります。

前回の記事で、多クラスロジスティック回帰のソフトマックス関数の微分を途中まで記載しました。今回はその続きです。

前回のおさらい

入力を\(x_i\)、出力を\(y_i\) (\(i\)=1,2, …n)とすると、
$$
\begin{pmatrix}
y_1 \\
y_2 \\
\vdots \\
y_n
\end{pmatrix}
=
\frac{1}{\sum_{j=1}^n e^{x_j}}
\begin{pmatrix}
e^{x_1} \\
e^{x_2} \\
\vdots \\
e^{x_n}
\end{pmatrix}
$$

と表せ、右辺の分母を
$$
Z := \sum_{j=1}^n e^{x_j}
$$

とおいたとき、ソフトマックス関数の微分を求めると、まず\(i\)=\(j\)では
$$
\frac{\partial y_i }{\partial x_i} = \frac{e^{x_i}Z – e^{x_i}e^{x_i}}{Z^2} = y_i(1 – y_i)
$$
となり、\(i\)≠\(j\)では
$$
-y_iy_j
$$

となるという説明をしました。この変換が分かりづらいので、今回はこの部分に焦点を絞ります。

ソフトマックス関数の微分(続き)

まず\(i\)=\(j\)の場合、
$$
Z := \sum_{i=1}^n e^{x_i}
$$
となるため、Zが\(x_i\)の関数になるので、(\(j\)が\(i\)に代わっている点に注意)
$$
\begin{eqnarray}
\frac{\partial y_i }{\partial x_i} &=& \frac{\partial}{\partial x_i} \frac{e^{x_i}}{Z} \\
&=& \frac{(e^{x_i})’Z – e^{x_i}Z’}{Z^2}
\end{eqnarray}
$$
※微分の公式により

ここで、シグマの微分をするわけですが、
$$
\begin{eqnarray}
Z &:=& \sum_{j=1}^n e^{x_j} \\
&=&e^{x_1} + e^{x_2} + \cdots + e^{x_i} + \cdots + e^{x_n}
\end{eqnarray}
$$
となるため、\(x_i\)の関数としては、和の中の\(x_i\)のみが残るので、
\(Z’\)は\( (e^{x_i})’ \)、すなわち\(e^{x_i}\)と等しくなります。
したがって上式は、
$$
\frac{\partial y_i }{\partial x_i} = \frac{e^{x_i}Z – e^{x_i}e^{x_i}}{Z^2}
$$
となるわけです。

ここで、
$$
y_i = \frac{e^{x_i}}{Z}
$$
なので、最終的に、\(i=j\)のとき、
$$
\begin{eqnarray}
\frac{\partial y_i }{\partial x_i} &=& \frac{e^{x_i}Z – e^{x_i}e^{x_i}}{Z^2} \\
&=& \frac{e^{x_i}}{Z}-(\frac{e^{x_i}}{Z})^2= y_i(1 – y_i)
\end{eqnarray}
$$
となります。

まとめ

  • 多クラスロジスティック回帰のソフトマックス関数の微分を途中まで説明しました。

私は数式が苦手なので、参考書の式導出がすぐに分からないのですが、こういう細かい計算過程が省かれていることが多いためだと思います。次回も引き続き式導出を解説

Reference

詳解ディープラーニング
https://book.mynavi.jp/manatee/books/detail/id=7242



-機械学習

執筆者:


  1. […] 前回の記事で、ソフトマックス関数の微分の導出過程を途中まで記載しました。今回はその続きです。 […]

comment

メールアドレスが公開されることはありません。 * が付いている欄は必須項目です

関連記事

ロジスティック回帰④ 勾配法その2

Table of Contents こちらを読むと勾配法の式のおさらい勾配法の式変形シグモイド関数の微分を用いて式変形パラメータの更新式まとめReference こちらを読むと ロジスティック回帰の勾 …

scikit-learn load_iris datasetのまとめ

Table of Contents こちらを読むと何がしたいかload_iris datasetまとめ こちらを読むと scikit-learnのload_iris datasetについて、詳細が分か …

kaggleのKernelでGPUを使うには

Table of Contents こちらを読むとはじめにKernelの設定まとめ こちらを読むと kaggleのKernelでGPUを使う方法が分かります。記事の所要時間は5分です。 はじめに ka …

多クラスロジスティック回帰⑥ モデル出力を確率で

Table of Contents こちらを読むと確率の表し方まとめReference こちらを読むと 多クラスロジスティック回帰について、モデル出力を確率で表す方法が分かります 確率の表し方 前回ま …

[機械学習] sklearnのグリッドサーチ(Grid Search)実装

Table of Contents こちらを読むとやりたいこと実装例まとめReference こちらを読むと sklearnのグリッドサーチ実装例が分かりますグリッドサーチしたベストパラメータの見方が …

Twitterフォロー

Twitterタイムライン