Python 機械学習

単純パーセプトロン③

投稿日:

こちらを読むと

  • 単純パーセプトロンの実装方法が分かります

数式おさらい

前回のブログで、単純パーセプトロンのモデル式および、重みとバイアスの更新式を以下のように定義できました。

$$
y = f({\bf w}^T{\bf x} + b)
$$
$$
\begin{eqnarray}
\Delta{\bf w}&=&(t-y){\bf x} \\
\Delta b&=&(t-y)
\end{eqnarray}
$$
$$
\begin{eqnarray}
{\bf w}^{(k+1)}&=&{\bf w}^{(k)}+\Delta{\bf w} \\
b^{(k+1)}&=&b^{(k)}+\Delta b
\end{eqnarray}
$$

実装

ここからは実装です。
プログラムは、詳解ディープラーニングを参考にさせていただきました。

まとめ

  • 単純パーセプトロンの実装方法が分かりました

ここまで、単純パーセプトロンについて、
理論→数式化→実装
と進めてきました。ほかのアルゴリズムでも、同じ方法で研究してみると理解しやすいと思います。

Reference

詳解ディープラーニング
https://book.mynavi.jp/manatee/books/detail/id=72424



-Python, 機械学習

執筆者:


comment

メールアドレスが公開されることはありません。 * が付いている欄は必須項目です

関連記事

ロジスティック回帰② アルゴリズム

Table of Contents こちらを読むと尤度関数を用いた最尤推定まとめReference こちらを読むと ロジスティック回帰のアルゴリズムを理解できます 前回の記事で、ロジスティック回帰はシ …

[機械学習] sklearnのグリッドサーチ(Grid Search)実装

Table of Contents こちらを読むとやりたいこと実装例まとめReference こちらを読むと sklearnのグリッドサーチ実装例が分かりますグリッドサーチしたベストパラメータの見方が …

SIerエンジニアが1年間AIを勉強して感じること

Table of Contents こちらを読むと結論:AI職は、エンジニアの上位職ではなく、別物著者についてAI職と一般エンジニアとの違い機械学習エンジニアが一般エンジニアと違うところ機械学習のモデ …

scikit-learn load_iris datasetのまとめ

Table of Contents こちらを読むと何がしたいかload_iris datasetまとめ こちらを読むと scikit-learnのload_iris datasetについて、詳細が分か …

Pythonでt検定を行う①

Table of Contents こちらを読むとやりたいことt検定とは仮説を立てるサイコロを振るまとめ こちらを読むと Pythonでの統計検定方法の例が分かりますt検定の方法が分かります やりたい …

Twitterフォロー

Twitterタイムライン